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Adaptive Experience Sampling for Motion Planning

using the Generator-Critic Framework
Yiyuan Lee, Constantinos Chamzas, and Lydia E. Kavraki

Abstract—Sampling-based motion planners are widely used for
motion planning with high-DOF robots. These planners generally
rely on a uniform distribution to explore the search space.
Recent work has explored learning biased sampling distributions
to improve the time efficiency of these planners. However,
learning such distributions is challenging, since there is no direct
connection between the choice of distributions and the perfor-
mance of the downstream planner. To alleviate this challenge,
this paper proposes APES, a framework that learns sampling
distributions optimized directly for the planner’s performance.
This is done using a critic, which serves as a differentiable
surrogate objective modeling the planner’s performance – thus
allowing gradients to circumvent the non-differentiable planner.
Leveraging the differentiability of the critic, we train a generator,
which outputs sampling distributions optimized for the given
problem instance. We evaluate APES on a series of realistic
and challenging high-DOF manipulation problems in simulation.
Our experimental results demonstrate that APES can learn high-
quality distributions that improve planning performance more
than other biased sampling baselines.

Index Terms—Motion and Path Planning; Learning from
Experience

I. INTRODUCTION

Motion planning [1] is a core component of reasoning in

robotics. Growing fields such as Task and Motion Planning [2]

and collaborative robotics [3] demand the need for more

performant motion planning. Here, motion planning is used as a

time-critical subroutine – called repeatedly by other high-level

modules. Sampling-based motion planners [4], [5] are widely

used today [6], and perform relatively well for practical systems.

These planners have been shown to efficiently approximate the

connectivity of high-dimensional search spaces using a small

number of configuration samples [4]. Such planners typically

explore the search space by drawing samples from a uniform

distribution. However, they still face difficulties in certain high-

dimensional problems [7]. To improve their efficiency, manually

defined criteria can be used to construct a biased sampling

distribution [8]–[10]. However, identifying such criteria may

be challenging for certain problems. On the other hand, recent

approaches have explored using experience to learn high-quality

sampling distributions [11]–[13].
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Figure 1: Overview of the training procedure for APES. The problem instance is
represented as an occupancy grid, a start configuration, and a goal configuration.
Given a problem instance, a generator proposes a set of coefficients to
instantiate a sampling distribution (orange). This sampling distribution is
represented as a basis of paths, weighted by the coefficients (trajectories
shown in the top-most subfigure). The sampling distribution is used to bias
a given planner’s search. After planning, we retrieve a performance estimate,
which is used to update a critic via supervision loss. The critic acts as
a differentiable surrogate objective (solid arrows) for the generator. This
allows the training gradients to circumvent the non-differentiable (dashed
arrows) planner, optimizing the generator directly for downstream planning
performance.

Learning such sampling distributions is challenging because

there is no direct connection between the choice of a sampling

distribution and the planner’s performance. As such, existing

methods seek to optimize the sampling distributions against

other indirect objectives, such as to reconstruct bottlenecks in

offline roadmaps [14], and past solution paths [15]. However,

these indirect learning objectives may not accurately reflect the

core objective of maximizing the planner’s performance. To

the best of our knowledge, no method exists that optimizes the

distributions directly for the performance of non-differentiable

sampling-based planners.

Towards this goal, we present Adaptive Experience Sampling

(APES), a framework that learns sampling distributions opti-

mized directly for a given planner’s performance. Using APES

(Fig. 1), the planner uses the learned distributions to sample

along a basis of paths – where the probability of producing

a sample along each path is described by a set of coefficients.

The core of APES is a generator, which maps a given problem

instance into a set of high-quality coefficients. The generator is

trained via the recent generator-critic framework [16], where

a critic is built from past experience to model the planner’s

performance. The critic is used as a differentiable surrogate

objective to circumvent the non-differentiable planner. This

allows the generator to be optimized directly for planning
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performance via gradient-based methods.

We applied APES to planning with RRTConnect [17] for

a series of realistic and challenging high-DOF manipulation

problems in simulation. In our experiments, we compare

APES with baselines that learn biased sampling distributions

using heuristics. We show that APES discovers better sampling

distributions – by considering the true performance objective

(i.e., minimizing the number of planner iterations required).

Additionally, we also investigate which components of the

problem specification are most important for learning high-

quality distributions, via an ablation study over the generator’s

inputs.

Overall, the main contributions of this work are as follows.

1) We present APES, a framework that can optimize sampling

distributions directly for planning performance. 2) We show that

the representation of sampling distributions as a weighted path

basis is effective for learning. 3) Experimentally validate the

effectiveness of APES on realistic, high-DOF motion planning

problems. 4) We investigate, through an ablation study, the

importance of available problem information for performance.

II. RELATED WORK

Over the years, several methods have been proposed to

improve planning performance of sampling-based planners,

through biased sampling. Some approaches utilize manually

defined criteria, such as Gaussian Sampling [8], Bridge Sam-

pling [9], and Medial-axis Sampling [10], where a configuration

sample is only accepted if it passes a user-defined check.

Another line of work utilizes workspace decompositions –

such as the Ball Decomposition framework of [18] or the

Delaunay Decompositions employed by [19]. More recently,

[20] introduced different section patterns to effectively explore

narrow passages for high-DOF robots.

Instead of handcrafted criteria, many methods have proposed

learning the sampling distributions from a robot’s past experi-

ence. One such class of methods attempt to learn fixed sampling

distributions that exploit problem invariants. For example, [21]

uses Kernel Density Estimation and [22] a Gaussian Mixture

Model (GMM) to model such distributions based on past solution

paths. Although easy to implement, it is difficult for such

methods to generalize across variations in workspaces and start

and goal configurations, since the learned sampling distributions

are not adaptive – they are unable to exploit problem-specific

information to maximize performance.

Instead of fixing the distributions, some methods exploit start

and goal specifications to use past experience for planning.

For example, library-based methods store experience in the

form of paths [23] or roadmaps [24], which are later retrieved

with handcrafted similarity functions defined over the start

and goal of new problems. The retrieved paths, if invalid, can

be used to seed optimization-based planners [25], or can be

reused in tandem with sampling-based planners [23], [24], [26].

In contrast to our method, the retrieval of these paths are

not optimized directly for performance, but rather based on

similarity to past experience.

Another class of methods utilizes only workspace features

to infer good sampling distributions. For example, [27], [28]

learn important workspace regions which are subsequently

transformed into C-space configuration samples through inverse

kinematics. The works of [12], [29] construct databases of local

samplers, which are queried by handcrafted workspace simi-

larity functions to synthesize sampling distributions. However,

these methods ignore the start and goal information, and either

apply only to low-dimensional robots, or require handcrafting

features of the workspace.

Finally, some methods generate sampling distributions that

are conditioned on all available information, i.e., workspace,

start, and goal – by leveraging the representational capabilities

of deep neural networks. The work of [15] uses a conditional

variational autoencoder (CVAE) to reconstruct past solution

paths as a form of sampling distribution. This was adapted

in [11], [14], where the reconstruction of the CVAE is used

to identify critical C-space regions via graph-based methods.

In contrast, APES does not use such reconstruction heuristics,

but learns a sampling distribution by optimizing directly for

downstream planning performance. Similar to our method, [30]

predicts weights of a GMM but defines a similarity cost over

depth images based on reconstruction. These existing methods

optimize against a handcrafted heuristic objective which does

not necessarily correspond to the true performance metric (of

minimizing the planner iterations required). Instead, APES can

optimize against the chosen performance objective directly, by

making use of the differentiable critic.

III. PROBLEM DEFINITION

We consider a motion planning problem, which includes:

1) the geometry and kinematics of the robot we wish to plan

for, 2) the set of obstacles and the distribution of possible

placements for each obstacle, 3) the distribution of possible start

configurations for the robot, and 4) the distribution of possible

goal configurations for the robot. Each problem instance c

defines a specific placement for each obstacle, a specific choice

of start configuration, and a specific choice of goal configuration.

In particular, such a problem instance c is represented as a triplet

of: 1) a D occupancy grid of the workspace, 2) a real vector

corresponding to the start configuration in C-space, and 3) a

real vector corresponding to the goal configuration in C-space.

For every problem instance c, we seek to produce a sampling

distribution, represented as a Gaussian Mixture Model (GMM)

in the C-space of the robot. The components of the GMM

are constructed from a fixed basis of K known solution paths

from previously seen problem instances. The number of solution

paths K is tuned manually. These solution paths are represented

as a sequence of points in C-space. Every point along these

K paths induces a component centered at that point, and is

given a fixed variance. Such a GMM is parameterized by a set

of coefficients w = (w1, . . . , wK) over the paths. The points

along each path i are weighted equally and sum up to the path’s

weight wi.

Given a problem instance c, the choice of GMM, described by

a set of coefficients w, is used to bias the chosen sampling-based

planner, RRTConnect [17]. In every iteration of RRTConnect,

we sample a new configuration from the GMM, which is used

as a target to extend the bidirectional trees. The performance of
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(a) Generator network (b) Critic network

Figure 2: Neural network architectures of the generator and the critic. (a) The generator passes the occupancy grid (red) through three layers of 3D convolutions
– each using 64 3× 3× 3 filters with leaky ReLU activation and max pooling (over a 2× 2× 2 window). The hidden units are flattened into a vector of 1728
real entries. This is concatenated with the start vector (purple) and goal vector (blue), which vary in length depending on the robot used. The result is passed
through three fully-connected layers with 512 hidden units each, using leaky ReLU activation. Finally, the output layer produces a vector of K = 50 real
numbers. This real vector is used to parameterize a Dirichlet distribution over coefficients (specifically, by rectifying the entries to be > 0 via the exp function,
and using the result as the concentration parameter of the Dirichlet distribution). Coefficient samples (of size K = 50) are then drawn from this distribution. (b)
The critic similarly passes the occupancy grid (red) through three layers of 3D convolutions – each using 64 3× 3× 3 filters with leaky ReLU activation and
max pooling (over a 2× 2× 2 window). The hidden units are flattened into a vector of 1728 real entries. This is concatenated with the start vector (purple)
and goal vector (blue), which vary in length depending on the robot used; and a choice of K = 50 coefficients (orange). The result is passed through three
fully-connected layers with 512 hidden units each, using leaky ReLU activation. Finally, the output layer produces a vector of two real numbers, which is used
to parameterize a Normal distribution approximating the performance objective (specifically, one entry is used as the mean parameter and the other is rectified
to be > 0 via the exp function and used as the scale parameter of the Normal distribution).

this planning is described by a performance objective V (c, w),
which is defined as the number of the planner’s internal planning

iterations until a solution is found. The maximum allowed

number of iterations is taken if the planner fails to find a solution

within the given budget. We select this performance objective

since it directly correlates to runtime efficiency. We note that

since the planner is stochastic, this performance objective is a

random variable.

The goal of this work is to find, for each problem instance

c, a set of coefficients w that maximize the expected planning

performance E[V (c, w)].

IV. METHODOLOGY

A. Overview of APES

Using APES (Fig. 1), the problem instance c is passed

to a generator Gθ (Fig. 2a), which is a neural network

with parameters θ. The generator outputs Gθ(c), a Dirichlet

distribution over coefficients. We use a distributional output

instead of a single output to allow for better exploration [31],

[32]. Coefficient samples w = (w1, . . . , wK) are drawn from

the Dirichlet distribution, with the property that wi ≥ 0 and

w1 + · · ·+ wK = 1. These coefficients induce a GMM, which

is used to bias the sampling of the downstream sampling-based

planner.

The key challenge is to optimize the generator directly for the

performance objective V (c, w), which cannot be differentiated

through the planner (RRTConnect). To do this, we adapt the

recent generator-critic framework [16], which was first used

to learn macro-actions for POMDP planning. In [16], a similar

problem was identified – the performance of online POMDP

planning, with respect to the choice of macro-actions, cannot be

differentiated through the selected POMDP planner (since the

POMDP planner is not differentiable). To circumvent this, the

authors built a critic – which is a neural network that models

the performance of the POMDP planner. The critic is used as

Algorithm 1: Generator training

1 θ ← InitGeneratorNetWeights()

2 ψ ← InitCriticNetWeights()

3 D ← InitReplayBuffer()

4 for i = 1, . . . ,W do parallel

5 while TrainingIncomplete() do

6 c← SampleProblemInstance()

7 w ∼ Gθ(c)
8 v ∼ CallPlanner(c, w)
9 D ← Append(D, (c, w, v))

10 {(ci, wi, vi)}
M
i=1 = Sample(D,M)

11 ψ ← ψ − 1
M
∇ψJcritic(ψ)

12 θ ← θ − 1
M
∇θJgenerator(θ)

13 α← α− 1
M
∇αJentropy(α)

a differentiable surrogate objective to pass training gradients

into the macro-actions.

We were inspired by [16] to develop APES. Here, our

approach learns sampling distributions optimized for sampling-

based planners. We similarly construct a critic V̂ψ (Fig. 2b),

which is a neural network parameterized by ψ, to approximate

the performance objective V (c, w). The critic V̂ψ takes the

problem instance c and a choice of coefficients w. It returns

V̂ψ(c, w), a normal distribution that seeks to approximate the

true downstream performance objective V (c, w)1. During train-

ing, both the critic and the generator are learned simultaneously.

The critic V̂ψ(c, w) is used as a differentiable surrogate of the

performance objective V (c, w), to allow approximate gradients

from V (c, w) to flow back to the generator. This optimizes the

generator directly for the performance objective.

1Note that the performance objective is a random variable. Hence, both

V (c, w) and V̂ψ(c, w) are distributions.



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2022

B. Offline training pipeline

The training pipeline is outlined in Alg. 1. The weights for

the generator and the critic are randomly initialized (Line 1 -

Line 2). An empty replay buffer is created (Line 3) to store

recent experience for training. W asynchronous workers are run

(Line 4) to collect data and to perform training. The workers

share access to the same generator and critic weights and replay

buffer, which are access-controlled by a set of global mutexes.

Each worker runs a data collection and training loop (Line

5). In each round, it first samples (Line 6) a random problem

instance c. It then invokes (Line 7) the generator Gθ to produce

a Dirichlet distribution over coefficients, from which a set of

coefficients w is sampled. A GMM is constructed from the

coefficients w, and is used to bias the RRTConnect planner (Line

8). This is done by sampling new points from the GMM when

extending the bidirectional trees maintained within RRTConnect.

After planning, we retrieve the number of planning iterations

used internally by the planner to find a solution. The maximum

allowed number of iterations is taken if the planner fails to find

a solution within the given budget. This value corresponds to a

sample v of the performance objective V (c, w). The experience

(c, w, v) is added to the replay buffer (Line 9).

The worker proceeds to update the networks. A mini-batch

with a fixed size of M data points is sampled uniformly (Line

10) from the replay buffer (without repetition within each mini-

batch). This is first used to update (Line 11) the critic by

minimizing the negative log-likelihood loss (with respect to

ψ):

Jcritic(ψ) =
M
∑

i=1

− log pψ(v | ci, wi) (1)

where pψ(v | ci, wi) denotes the p.d.f of observing v using

the model V̂ψ(ci, wi) produced by the critic. Then, the critic is

used as a differentiable surrogate objective to update (Line 12)

the generator, by minimizing the objective (with respect to θ):

Jgenerator(θ) =

M
∑

i=1

E
w∼Gθ(ci)

[

E

[

V̂ψ(ci, w)
]]

− α · H(Gθ(ci)).

(2)

The first term is a planning term representing the expected

planner’s performance over the coefficients distribution output

by the generator. The second term is an entropy regularization

term which prevents the generator from converging prematurely,

by regularizing the entropy H(Gθ(ci)) of its outputs. The

weight α > 0 of the entropy regularization term is then adjusted

(Line 13) by minimizing the objective (with respect to α):

Jentropy(α) =

M
∑

i=1

α · (H(Gθ(ci))−H0) (3)

where we constrain α > 0 through a rectifier2. This effectively

enforces a minimum amount of entropy H0 in the coefficients

produced by the generator, using the same scheme as [16], [32].

This finally completes a round of data collection and training

for the worker, and the process is repeated up to an allowed

number of training rounds.

2In particular, α = eβ with β ∈ R.

C. Reparameterization trick and chain rule

The planning term of Eqn. 2 does not have an analytical

closed-form, since we are unable to compute exactly the

expectation over Gθ(c). Instead, we approximate its gradient

via the reparameterization trick [33]. The planning term can

be rewritten as

E
w∼Gθ(ci)

[

E

[

V̂ψ(ci, w)
]]

≈ E
ǫ∼N (0,1)

[

E

[

V̂ψ(ci, fθ(ǫ; ci))
]]

(4)

where we reparameterize Gθ(c) as a deterministic function

fθ(ǫ; c) – which takes a random seed vector ǫ ∼ N (0,1) and

outputs a coefficient vector.

The value of Eqn. 4 can be estimated in terms of samples

of ǫ. Thus, using an estimate derived from a single sample

of ǫ, we apply the chain-rule to finally derive an approximate

gradient of the planning term:

∇θ E
w∼Gθ(ci)

[

E

[

V̂ψ(ci, w)
]]

≈

∇wE
[

V̂ψ(ci, w)
]∣

∣

∣

w=fθ(ǫ;ci)
∇θfθ(ǫ; ci)

(5)

where we evaluate the derivative at w = fθ(ǫ; ci).

V. EXPERIMENTS

A. Setup

Problem specifications. We apply APES to a series of

motion planning problems for realistic robots in simulation

– CAGE (Fig. 3a), BOOKSHELF (Fig. 3b), and TABLE (Fig. 3c),

which were generated with MOTIONBENCHMAKER [7]. Within

each problem, every instance contains variations in the position

of the workspace objects, the start configuration, and the goal

configuration. For CAGE, the 3D position of the cage varies by

±10 cm along all three axes, while its rotational offset from the

robot varies by ±30◦. The 2D position of the cube in the cage

varies by ±25 cm along both axes, with orientation varying by

±90◦. For BOOKSHELF, the 2D position of the bookshelf varies

by ±10 cm along both axes, while its rotational offset from the

robot varies by ±30◦. Each cylinder has a fixed depth within

its allocated compartment, while its lateral position varies by

±45 cm. In TABLE, the lateral position of each bar varies by

±10 cm. There is also variation in whether the robot is required

to tuck its arms crossed or uncrossed.

For each problem, we pre-generate 500 instances for training

and 500 instances for testing. We use RRTConnect with OMPL

default parameters for planning, and limit the maximum number

of iterations internally allowed by the planner to 1000, 10000,
and 100000 respectively. The TABLE is given a much larger

limit since it is substantially harder – the planner has to plan

for two 7 DOF arms under a small space allowance.

Training and evaluation procedure. APES was applied to

each problem as follows. First, we built a fixed path basis

of size K = 50, using the solution paths of 50 randomly

selected problem instances in the training set. Then, we train

the generator using Alg. 1, for a total of 20000, 50000, 20000
training rounds respectively across W = 8 asynchronous

workers. A replay buffer of size 5000 was used, with mini-

batch sizes of M = 64. These hyperparameters were selected
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(a) CAGE (b) BOOKSHELF (c) TABLE

Figure 3: Samples of problem instances used in our experiments. The positions and orientations of the objects in the scene are randomized relative to the
robot. The start configurations are uniformly sampled from the robot’s collision-free C-space. The goal configurations are randomly selected according to the
problem. For illustration purposes, we show only the goal configurations. (a) CAGE problem: a UR5 (6-DOF) robot reaches for a box inside a constrained cage.
(b) BOOKSHELF problem: a Fetch (8-DOF) robot reaches deep inside a bookshelf to pick the cylinder at the back. (c) TABLE problem: a Baxter (14-DOF) robot
tucks both its arms between the bars under the table, given a small space allowance. In some problem instances, the arms need to be tucked crossed (top).

through manual tuning, as well as through consideration of

compute limitations. After training, the fixed path basis and

trained generator are evaluated on the set of 500 problem

instances. All experiments are run on an Intel Xeon Gold 6130

(32x 3.7GHz) with 32GB of RAM and a NVIDIA RTX 3060.

Baselines. APES was compared to 4 baselines. These in-

clude CVAE [15], which learns to reconstruct past solutions

– conditioned on the workspace, start, and goal information –

using a conditional variational autoencoder; FLAME [12], which

builds a database of local samplers from path experience which

are queried with a handcrafted similarity function over local

workspace information; PATHUNION, which simply assigns

equal weights to all waypoints in a set of path experience

to build a GMM (thus learning problem invariants similar to

Repetition Sampling in [22]); and vanilla UNIFORM which runs

the planner with the typical uniform distribution. All baselines

similarly use RRTConnect for planning with the same maximum

allowed number of planner iterations. While APES uses only

500 training instances, it calls the planner repeatedly on these

instances during training, up to a total of 20000, 50000, 20000
invocations respectively. To maintain fairness, we provide

20000, 50000, 20000 training instances to the baselines. We

also tuned the hyperparameters for the baselines for optimal

performance.

B. Training performance

The training performance of APES compared to the baselines

are shown in Fig. 4. In this work, we seek to optimize the

generator for the downstream performance objective – which is

to minimize the number of planning iterations used internally

by the planner until a solution is found. The maximum allowed

number of iterations is taken if the planner fails to find a

solution within the given budget. This metric was chosen over

the metric of time taken, since it correlates directly to sampling

efficiency. On the other hand, the metric of running time is

affected by other factors such as size of the trees maintained

internally by RRTConnect, or overhead from preprocessing.

Overall training performance. Starting with a randomly

initialized generator, APES was able to optimize the generator

to produce high-quality coefficients. Given sufficient data,

APES eventually outperformed the baselines in CAGE and

TABLE, while achieving similar performance as FLAME in

BOOKSHELF. Despite our best efforts in tuning CVAE, it had

similar performance as UNIFORM. We believe that this is

due to the multimodality of the motion planning problem

[34] which cannot be captured by the unimodal output of

CVAE. Additionally, in this work, we used a D occupancy

grid to represent the workspace, instead of the geometric

representations used in prior works for CVAE [12], [14]. This
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(a) CAGE (b) BOOKSHELF (c) TABLE

Figure 4: Performance of APES against learning baselines with increasing amounts of training data. We evaluated the number of planning iterations used
internally by the planner until a solution is found, averaging the results over 500 test problems. Each planner iteration involves drawing a sample from the
learned sampling distributions, to extend the bidirectional trees maintained in RRTConnect. The maximum allowed number of iterations is taken if the planner
fails to find a solution within the given budget. The performance of UNIFORM is shown as a horizontal line for comparison. The missing evaluations for FLAME

in the TABLE problem could not be done within the 32GB memory limit, and are omitted.

CAGE BOOKSHELF TABLE

Iterations Success Rate Time (s) Iterations Success Rate Time (s) Iterations Success Rate Time (s)

APES (Ours) 152 (12) 0.94 (0.01) 42 (3) 3765 (190) 0.73 (0.02) 59 (3) 8014 (820) 0.98 (0.01) 61 (7)

CVAE 855 (13) 0.15 (0.02) 113 (2) 8494 (130) 0.27 (0.02) 152 (2) 61493 (4500) 0.41 (0.02) 2397 (90)
FLAME 249 (12) 0.94 (0.01) 97 (5) 3796 (130) 0.89 (0.01) 104 (2) 15670 (1200) 0.93 (0.01) 156 (11)

PATHUNION 253 (12) 0.93 (0.01) 89 (5) 4113 (160) 0.81 (0.02) 122 (4) 14310 (1000) 0.96 (0.01) 150 (11)
UNIFORM 936 (8) 0.14 (0.02) 87 (2) 8470 (120) 0.30 (0.02) 173 (3) 62610 (2100) 0.41 (0.02) 2559 (96)

Table I: Detailed performance of APES and baselines across the test problems. Iterations refer to the number of planning iterations used internally by the
planner until a solution is found. The maximum allowed number of iterations is taken if the planner fails to find a solution within the given budget. Success

rate refers to the probability of finding a solution within the iteration budget. Numbers indicate the mean, with standard errors in braces. Time refers to the
time taken to find a solution or to use up the iteration budget. Bold entries indicate the best-performing results.

likely made it harder to learn a mapping from workspace to

C-space.

Comparing data usage. The baselines generally took much

fewer training data to converge compared to APES. However,

APES is able to utilize larger amounts of data to improve per-

formance. For the case of using FLAME for the TABLE problem,

there is a noticeable memory overhead which makes it infeasible

to execute for very large amounts of data. Interestingly, FLAME

and PATHUNION seem to degrade in performance with more

data for the TABLE problem. A possible explanation is that

for TABLE, the solutions require exploring small regions in a

concentrated manner. Using less data, FLAME and PATHUNION

were able to concentrate the planner on such small regions of

the C-space. With more data, the sampling distributions spread

out over a larger volume, causing it to dilute this concentration.

C. Planning results

In Table I, we analyzed the performance of the learned

generator against the other baselines. In addition to the metric

of planning iterations used internally by the planner, we also

show the success rate of finding a solution in the allowed

number of iterations, and the time taken.

Overall planning performance. Our results show that APES

produces the best sampling distributions for RRTConnect, in

terms of the number of planning iterations used internally by

the planner. We also achieved the highest success rate for CAGE

and TABLE. APES also achieves the lowest planning time across

all problems.

Trade-off between metrics. In CAGE and TABLE, APES

achieves a success rate similar to FLAME and PATHUNION, but

uses fewer iterations. This indicates that APES was able to

identify regions of the C-space that allow for fewer planning

iterations despite providing the same success rate. On the other

hand, in BOOKSHELF, APES achieves a similar number of plan-

ning iterations used while having a lower success rate compared

to FLAME. This indicates that APES has favored riskier regions

which cut down planning iterations. We also note that the

metric of planning time time appears disproportionate. This is

because the time taken is affected by various additional factors.

For example, RRTConnect maintains an internal structure of

the trees grown for nearest-neighbour lookup, which grows

with more samples added to the tree. Since we are primarily

concerned with the efficiency of samples, we focus on the

number of planning iterations instead of the time taken.

What have we learned? To illustrate the effect of learning

using APES, we visualize the learned coefficients in Fig. 5 for

the BOOKSHELF problem. We select three problem instances

where the robot has to reach into different compartments of

the bookshelf. For each instance, we call the learned generator

and visualize the top three paths with the highest coefficients.

From Fig. 5, it can be seen that depending on the goal, the

proposed paths lead towards the corresponding compartment

of the bookshelf.

D. Ablation study

In Table II, we conducted an additional ablation study to

investigate how much the information of the workspace, the
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(a) Upper compartment (b) Middle compartment (c) Lower compartment

Figure 5: Visualization of the sampling distributions learned by APES, for different problem instances of BOOKSHELF. The paths visualized are taken from
the path basis used by APES. We show only the top three paths with the highest coefficients. The relative value of a path’s coefficient is indicated by its
opacity. (a-c) It can be seen from the visualizations that depending on the object the robot needs to pick, the most prominent paths guide the robot towards the
corresponding compartment of the bookshelf.

start, and the goal affect performance. We use variants of the

generator that take only the workspace information or the start

and goal information when generating coefficients. Additionally,

we included an unconditioned version where we learned a fixed

coefficient distribution for all workspaces, start, and goals.

Conditioning generally improves performance. Our re-

sults show that in all problems, information of all of the

workspace, the start, and the goal is beneficial to achieving

the best results using APES. In CAGE, both workspace and start

and goal information appear equally important. In BOOKSHELF

and TABLE, information about the start and goal appears to be

more important.

Comparing with baselines. We note that APES generally

performs better than the baselines (in Table I) when given

the same amount of information – CVAE uses workspace,

start, and goal; FLAME uses only workspace information;

while PATHUNION is unconditioned. This indicates that by

optimizing directly for planning performance, APES can utilize

the given information more efficiently. The exception is the

unconditioned version of APES applied to BOOKSHELF, which

performs worse than PATHUNION. Indeed, unconditioned APES

simply resolves to a weighted variant of PATHUNION where

each path is given a learned set of weights. Since PATHUNION

is constructed from many more paths (compared to a basis of

just 50 paths in APES), it is likely that the wide coverage of

paths in PATHUNION was able to compensate for the lack of

optimization of path weights.

VI. DISCUSSION

In this paper, we proposed APES – a learning method that can

be used to informatively guide a sampling-based planner using a

biased sampling distribution. The key advantage of APES is that

it can directly optimize for the desired performance objective –

in our case, the number of planning iterations used internally

by the planner until a valid path is found. Additionally, APES

is able to utilize all the available information to condition the

sampling distribution. We demonstrate the benefits of APES

in 3 challenging manipulation problems where it outperforms

other baselines.

CAGE BOOKSHELF TABLE

All Information 152 (12) 3765 (190) 8014 (820)
Workspace Only 219 (14) 5458 (190) 10694 (1000)

Start & Goal Only 212 (14) 4218 (190) 9275 (930)
Unconditioned 241 (14) 5363 (180) 9216 (880)

Table II: Ablation study using partial problem information. We show the
number of planning iterations used internally by the planner until a solution is
found. The maximum allowed number of iterations is taken if the planner fails
to find a solution within the given budget. Numbers indicate the mean, with
standard errors in braces. Bold entries indicate the best performing results.

One of the limitations of our current approach is that the

selection of the path basis greatly affects the performance of

the learned distributions. Currently, the path basis is randomly

selected and fixed, and it is not clear how to optimize it. In

our future work, we would like to investigate ways to improve

upon this. Other future work could investigate using APES

with different planners and performance objectives. It could

also include a deeper investigation into the generalization

capabilities of APES, such as across different problems, planners,

and robots.

This work could also aid in investigating the connection

between the choice of 1) sampling-based planner, 2) perfor-

mance metric, and 3) sampling distribution. For example, is it

possible that different planners have different optimal sampling

distributions? Is it possible that a sampling distribution which

maximizes the success probability is completely different from

one which minimizes the iterations used? Indeed, we can easily

swap these components in APES, with minimal changes to the

training pipeline. Overall, we hope that our work will serve

as a general tool to better understand the relationship between

sampling-based planners and the sampling distributions which

they use.
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