
Accepted for publication in IEEE International Conference on Robotics and Automation (ICRA), May 2022

Learning to Retrieve Relevant Experiences for Motion Planning

Constantinos Chamzas, Aedan Cullen, Anshumali Shrivastava, Lydia E. Kavraki

Abstract— Recent work has demonstrated that motion plan-
ners’ performance can be significantly improved by retrieving
past experiences from a database. Typically, the experience
database is queried for past similar problems using a similarity
function defined over the motion planning problems. However,
to date, most works rely on simple hand-crafted similarity
functions and fail to generalize outside their corresponding
training dataset. To address this limitation, we propose (FIRE), a
framework that extracts local representations of planning prob-
lems and learns a similarity function over them. To generate
the training data we introduce a novel self-supervised method
that identifies similar and dissimilar pairs of local primitives
from past solution paths. With these pairs, a Siamese network
is trained with the contrastive loss and the similarity function is
realized in the network’s latent space. We evaluate FIRE on an 8-
DOF manipulator in five categories of motion planning problems
with sensed environments. Our experiments show that FIRE

retrieves relevant experiences which can informatively guide
sampling-based planners even in problems outside its training
distribution, outperforming other baselines.

I. INTRODUCTION

Motion planning is used in real-time autonomous vehi-

cles [1], manipulators in dynamic environments [2], and as

a subroutine in planners for complex missions (e.g. task and

motion planning [3]), all of which rely heavily on efficiency.

However, motion planning is still challenging, especially for

high-dimensional systems [4]. Sampling-based planners [5]–

[7] are a class of motion planning algorithms that have found

widespread adoption in the planning community. Although

significant progress has been made over the years, planning

is still computationally expensive [8], hindering the adoption

of robotic solutions. Thus, to endow robots with real-time

capabilities, faster motion planning algorithms are necessary.

A promising avenue is to guide planning by leveraging the

past experiences of a robot. Several methods have shown that

storing and retrieving experiences [9], [10] can significantly

improve motion planners’ efficiency. These methods have

focused on what to store and how to adapt/repair it for

the current situation, but not on how to retrieve the most

relevant experiences, defaulting to simple similarity functions.

In other words, little emphasis has been placed on finding

suitable functions that quantify the similarity of motion

planning problems, limiting the generalizability of retrieval-

based methods outside their training dataset.

In this context, for similar motion planning problems

or subproblems, the solution path of one can be used to

expedite the search when solving the other. Capturing this
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Fig. 1. Three example problems M0,M1,M2 where the robot is tasked
with picking one object from a shelf starting from the same tuck (home)
configuration (not shown for visual clarity). The motion planning problems
M0 and M1 have similar solution paths even though their workspaces are
visually different. On the other hand, visually similar workspaces such as
M1 and M2 can have different solution paths for subtle reasons (e.g. slightly
different goals, obstacle arrangements, and robot base orientation).

notion of similarity is the core investigation of this work.

Designing a good similarity function is very challenging

for motion planning problems. For example, in Fig. 1 two

visually dissimilar workspaces M0, M1 have similar solution

paths while visually similar workspaces M1 and M2 have

different solution paths. A good similarity function should

capture the commonalities between M0 and M1 while still

distinguishing between M1 and M2. These problems are part

of the “Tall-Shelf” dataset described in Sec. V.

To address this problem we propose Fast retrIeval of

Relevant Experiences (FIRE). As detailed in Sec. IV, FIRE

extracts suitable local representations, called local primitives,

from previous problems. FIRE finds pairs of similar and

dissimilar local primitives using a self-supervised method.

With these pairs, a similarity function is learned which can

be used to retrieve relevant experiences and guide a motion

planner. We demonstrate the effectiveness of FIRE with an 8-

DOF mobile manipulator in five categories of diverse problems

with sensed environments as shown (Fig. 1). Through our

experiments (Sec. V) we show that FIRE generalizes better

outside its training dataset even with less data, and is faster in

terms of planning time than prior work. The implementation

of FIRE and the generated datasets are open-source 1.

Overall, the main contributions of this work lie in 1)

defining suitable local representations of motion planning

problems, 2) learning a similarity function over them, and 3)

applying it in the motion planning problem through our new

framework. Although FIRE is tailored to retrieval frameworks

that use local features and biased sampling distributions [11],

[12] we believe it could be easily adapted to work with other

retrieval-based methods [13]–[15].

1https://github.com/KavrakiLab/pyre

https://github.com/KavrakiLab/pyre
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II. PROBLEM DESCRIPTION AND NOTATION

Feasible Path Planning: Consider a robot in a workspace

W . A configuration of the robot x is a point in the config-

uration space (C-space), x ∈ C. Obstacles in the workspace

induce C-space obstacles Xobs ⊂ C. The set of configurations

that are not in collision is denoted by Xfree = C−Xobs. We are

interested in finding a path p, from xSTART ∈ Xfree to xGOAL ∈
Xfree, as a continuous map with p(0) = xSTART, p(1) = xGOAL

such that for all t ∈ [0, 1], p(t) ∈ Xfree. We denote the motion

planning problem by M = (xSTART, xGOAL,W).
“Challenging Regions” and “Critical Samples”: In this

work, we are concerned with planning for high-dimensional

robotic manipulators, and focus on sampling-based motion

planners. A common theme in learning-based approaches is

to produce configurations in C-space regions with low visi-

bility [16], which are the main bottleneck for sampling-based

motion planners [17]. We denote these “challenging regions”,

and configurations inside them “critical samples.”

Retrieval-Based Learning for Motion Planning: Given a

dataset DS = {Mi : pi}Ni=1
of past problems M and their

feasible paths p, retrieval-based methods extract information

from DS and store it in a database denoted DB. In this

context, DB is a structure that contains 〈key : value〉 entries,

with the experiences (values) being “critical samples.” The

indices (keys) of the database are local primitives denoted

by ℓ ∈ L, where L is the space of local primitives. Each

local primitive includes local workspace information [12]

along with xSTART, xGOAL information (as defined in Sec. IV-

A). This work aims to learn a suitable similarity function

SIM : L × L → {0, 1} over the local primitives in order to

retrieve relevant “critical samples” for a given problem M.

III. RELATED WORK

Over the years many techniques have been proposed to

guide sampling-based motion planners. Many examples use

heuristics to bias sampling, such as Bridge sampling [17],

Gaussian sampling [18], Medial-Axis sampling [19], and

workspace-based sampling [20]. However, these predefined

heuristics may or may not apply in different situations.

Thus, a growing number of works attempt to learn how to

guide planning by utilizing past solutions to motion planning

problems. One set of methods learns interesting regions

in W [21], [22] but requires an inverse kinematics solver

to infer samples in “challenging regions”. A similar class

of methods directly computes relevant configurations in C
from a motion planning problem M using a neural network.

For example, some methods train a conditional variational

autoencoder to reconstruct samples from previous paths [23]

or “challenging regions” [24]–[26]. The authors of [27], [28]

use a 3D CNN to sample in “challenging regions”, while [29]–

[31] use neural networks as motion planners.

Although these methods have shown some promising

results, mapping M to paths or “challenging regions” in

C is hard in high-dimensional problems. Motion planning

is sensitive to input; small changes in W , xSTART, or xGOAL

can drastically alter the resulting solution [12], [14], [32].

Furthermore, this mapping is usually multi-modal, since a

a) b)

Fig. 2. a) The blue dots depict the 10 projections defined on the arm and
gripper of the Fetch robot. Each blue dot is one projection point π(x)p ∈ R

3

of x ∈ C. Specifically, each robotic link of the arm+gripper was used as a
projection, as described in its urdf. b) Examples of local occupancy grids
and their position in space derived from the sensed scene (lw = (b, v)).
Note that only non-empty local occupancy grids are generated.

motion planning problem may have multiple solution paths

or multiple disjoint “challenging regions” [15], [33].

For these reasons, some approaches have adopted retrieval-

based methods, also known as library- [34] or memory-

based [35] methods. Such methods typically store in memory

a database DB and retrieve relevant information in the form of

paths [36], [37] or sampling distributions [11], [38] based on

a similarity function overM. These methods naturally apply

to multi-modal problems, since for similar or identical M
multiple outputs can be retrieved. Another advantage of these

methods is that they are incremental since new experiences

can simply be added to the database DB. The main challenge

lies in constructing a good similarity function over M.

Defining a similarity function is challenging because M
contains heterogeneous parameters; xSTART, xGOAL ∈ C while

W is a 3D representation. Some approaches do not use a sim-

ilarity function but learn problem invariants [39], [40], others

construct the similarity only over xSTART and xGOAL [10], [36],

and some construct it only overW [12], [13]. In [12] a hand-

crafted similarity function over local workspaces is defined,

while [13] defines workspace similarity based on geometric

deformation of obstacles. Most similarly to our work, [9]

learned a similarity function over xSTART, xGOAL, andW using

a weighted combination of global workspace features. In

contrast, our work uses local features and leverages latent

space representations obtained from neural networks.

Learning similarity functions [41] in the latent space has

been successfully employed in computer-vision tasks, such

as image classification [42] and 3D object classification [43].

Our work is inspired by these methods, and applies similar

metric learning methods to the motion planning problem.

IV. METHODOLOGY

We propose FIRE, a framework that learns a similarity

function to retrieve relevant experiences from a database in

the form of “critical samples”. In Sec. IV-A we formulate

the local primitives which are the input to the similarity

function, and we extract them from past problems in Sec. IV-

B. Then, we describe how to generate similar and dissimilar

local primitives (Sec. IV-C). In Sec. IV-D, we train a Siamese

network by minimizing the contrastive loss of the local

primitive pairs and realize the similarity function in the

learned latent space. Finally, Sec. IV-E explains how the

similarity function can guide a sampling-based planner.
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A. Local primitives

First, we define a set of projections π(x) : C → R
3 used

to extract and compare local primitives. Each configuration x
is projected to multiple points in W and stacked as a vector

Π(x) = [π1(x), π2(x), . . . , πP (x)] ∈ R
3×P

where P is the number of projections. Fig. 2a) shows the

10 projections on the Fetch which we used. Specifically, we

used the link frames of the arm+gripper from the Fetch [44]

urdf. Projections have often been used to guide motion

planners [45] and specifying them is often a research problem

in itself, albeit outside the scope of this work.

Now we define the local primitives ℓ, which include a local

3D occupancy grid and its position lw [12] along with some

auxiliary C-space information xTARGET and xPROJ:

ℓ = [lw, xTARGET, xPROJ]

More specifically, lw = (b, v) where b ∈ {0, 1}64 is a

64-bit binary vector that represents a (4x4x4) local occupancy

grid and v ∈ R
3 is the center position of the grid. Examples

of lw are shown in Fig. 2b. The variable xTARGET ∈ C is either

xSTART or xGOAL, depending on the situation as explained in

Alg. 1 and Sec. IV-E. Finally, we calculate xPROJ from xTARGET

and the center position v of lw. We project xTARGET to P points

in the workspace Π(xTARGET) ∈ R
3×P and then aggregate all

the distances between the P points and v to calculate xPROJ:

xPROJ = [‖v − π1(xTARGET)‖ , . . . , ‖v − πP (xTARGET)‖] ∈ R
P

The variable xPROJ serves as an interleaved representation of

xTARGET and lw and was empirically validated to improve the

latent space structure.

B. Creating the experience database

Alg. 1 describes how to create the experience database

DB from DS = {(xSTART, xGOAL,W )i : pi}Ni=1
by associating

each local primitive with a configuration from a solution path.

First, the paths are shortcutted [46] to remove redundant

nodes not in “challenging regions” (line 1 in Alg. 1) and

keep only “critical samples”. Finding “critical samples” is

still an open research problem [12], [22], [24] but this simple

shortcutting heuristic has been used previously in [11], [39].

Next, TARGET (line 2 in Alg. 1) samples near xSTART and

xGOAL and chooses the one which yielded the most in-collision

samples with the workspace. This aims to create the same

local representation for motion plans with the same solution

path but swapped xSTART and xGOAL. Consider for example the

task in Fig. 1, where the robot plans from the home (xSTART) to

a grasp configuration (xGOAL). The same solution path applies

for planning between the grasp configuration (xSTART) back

to the tuck configuration (xGOAL). Thus, to ensure that both

plans have the same local representations TARGET should

choose the same configuration as xTARGET (e.g. the grasp

configuration). We then decompose the workspace to local

occupancy grids (line 3 in Alg. 1) by traversing the octomap

tree similarly to [12].

Algorithm 1: Creating the experience database

Input : MP problem W, xSTART, xGOAL Path p
Output : Database DB

1 Shortcut p′ = SHORTCUT(p)
2 Find target xTARGET ← TARGET (xGOAL, xSTART)

3 Decompose W to LW ← {lw1, . . . , lwM}
4 foreach lw ∈ LW do

5 foreach x ∈ p′ do

6 foreach π ∈ Π do

7 if CONTAINS (lw, π(x)) then

8 xPROJ ← |ṽ −Π(xTARGET)|
9 ℓ← [lw, xTARGET, xPROJ]

10 xn ← NEXT(x, p)
11 xp ← PREV(x, p)
12 Insert 〈ℓ : xp, x, xn〉 in DB
13 return DB

Afterward, we iterate over the configurations in each

path, the local occupancy grids, and the projections. The

subroutine CONTAINS associates each configuration with its

relevant regions in the workspace. CONTAINS checks for

every projection π(x)p ∈ R
3 of the configuration x if it is

contained in the bounding box of an occupancy grid; if so

we store the local primitive ℓ along with the critical x, the

previous waypoint configuration xp, and the next waypoint

configuration xn in DB. The previous and next configurations

are only used to help us create similar pairs as described in

Alg. 2 and are not part of the retrieved experience.

C. Creating a dataset of similar pairs

Alg. 2 describes a novel method to create a dataset of

similar pairs of local primitives over which to learn the

similarity function. This is the key problem investigated in

this paper.

Given a database DB, we iterate over all pairs of local

primitives and perform the following checks. First, the

subroutine SAME_PROJ checks if the two local primitives

were generated by the same projection (line 3 in Alg. 2).

Then we check whether the centers v of the local occupancy

grids are close enough in W (line 4 in Alg. 2) and whether

the stored configurations are also close enough in C-space

(line 5 in Alg. 2). The variable lwside is the length of the

side of the local occupancy bounding box lw.

Finally (line 5 in Alg. 2) we sample up to N times

xnear
j ∼ N (xj , σ

2) until a configuration xnear
j is found

which passes the VALID check. The VALID subroutine

checks if xnear
j can connect through a collision-free edge (in

the full workspaceW of ℓi) with the next xn
i and previous xp

i

configuration of the local primitive ℓi. If such a configuration

is found then we consider 〈ℓi, ℓj〉 similar and add them to

S. This procedure aims to discover local primitives whose

“critical samples” are good substitutes for one another by

emulating how “critical samples” are used to bias sampling

during planning (Sec. IV-E). To generate dissimilar pairs

we randomly choose local primitives from DB and generate

an equal number of dissimilar pairs. We denote the set that

includes these dissimilar pairs NS .
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Algorithm 2: Creating a dataset of similar pairs

Input : Database DB
Output : Pairs of similar local primitives S

1 foreach 〈ℓi : x
p
i , x

i, xn
i 〉 ∈ DB do

2 foreach 〈ℓj : x
p
j , xj , x

n
j 〉 ∈ DB do

3 if SAME PROJ(ℓi, ℓj) then

4 if ‖vj − vj‖1 <= sizelw then

5 if ||xi − xj || < 10σ2 then

6 repeat N times

7 xnear
j ∼ N (xj , σ

2)
8 if VALID(xp

i , x
near
j , xn

i ) then

9 S ← 〈ℓj , ℓi〉
10 break

11 return S

Note that Alg. 2 needs the “critical samples” extracted

from solution paths to find similar local primitives, and cannot

be used as a similarity function when solving a new motion

planning problem where only W,xGOAL, xSTART is available.

D. Learning the similarity function

The learned similarity function is realized in the latent

space of a Siamese network. A Siamese network [47] is

comprised of two identical encoder networks as shown in

Fig. 3. Each encoder maps ℓ to a latent variable z ∈ R
8.

The overall network is relatively small with around 3500

parameters, and was trained with the contrastive loss [48]:

L(ℓi, ℓj) =

{

max(0, dm − ‖zi − zj‖
2
) if 〈ℓj , ℓi〉 ∈ NS

||zi − zj ||
2 if 〈ℓj , ℓi〉 ∈ S

This loss tries to bring local primitives that belong in

S (similar) as close as possible in the latent space Z, while

local primitives that belong in NS (dissimilar) must have at

least a margin distance dm = 0.5. After having structured the

latent space Z the similarity function is defined as follows:

SIM(ℓi, ℓj) =

{

1 if ‖zi − zj‖
2
< R

0 otherwise

where R = 0.2dm is the retrieval radius. A lower retrieval

radius than the margin distance dm must be used to avoid

retrieving dissimilar pairs. After structuring the latent space

Z all the local primitives in DB are projected to Z and added

in a K-D tree [49] structure for fast retrieval. Finding similar

local primitives with SIM is equivalent [50] to retrieving all

the neighbors within radius R in the latent space Z.

E. Retrieving relevant experiences

When solving a new problem M =(xSTART,xGOAL, W) the

new local primitives are created with the following procedure.

First, we extract the local occupancy grids fromW . Then, for

each local occupancy grid lw we generate two local primitives:

one with xTARGET = xSTART and one with xTARGET = xGOAL. The

value of xPROJ is calculated from xTARGET and ℓ as explained in

Alg. 1. Each created local primitive is projected to Z and its

neighbors within radius R are retrieved, effectively obtaining

their associated “critical samples” from DB. Finally, similarly

Fig. 3. The Siamese network architecture used. The activation function
for all the layers was ReLU. Conv3D denotes a 3D convolutional layer,
MaxPool takes the maximum value out of every subgrid, and FC denotes a
fully connected layer. The parameters of each layer are shown in the figure.

''Small-Shelf'' Problems (Train)

a) b)
Start Goal

Timeout

Fig. 4. a) An example problem from the “Small-Shelf” dataset. We generate
different problems by uniformly sampling the robot pose, the position of the
obstacles, and the height of the shelf. This is similar to the “Small-Shelf” used
in [12] but the shelf is shorter, making it more challenging due to the narrow
area the robot has to traverse. b) Planning time (including retrieval) with
different underlying planners for 100 test examples from the “Small-Shelf”
dataset. The timeout was set to 180 seconds.

to [12], we aggregate all the K “critical samples” and convert

them to a Gaussian Mixture Model (GMM):

P (x|M) =
1

K

K
∑

i=0

N (xi, σ
2)

The GMM can be used to bias the sampling of any sampling-

based planner. To keep the probabilistic completeness guar-

antees of sampling-based planners we sample from P (x|M)
with probability 0 < λ < 1 and from a standard uniform

distribution with probability (1 − λ). If the planner uses a

local expansion strategy like EST [6] we simply sample from

the mixtures that are within the local sampling radius.

V. EXPERIMENTS

We demonstrate the effectiveness of the learned similarity

function on five generated datasets with MOTIONBENCH-

MAKER [51]. Each dataset contains an 8-DOF (arm+torso)

Fetch robot [44] with a workspace represented by an oc-

tomap [52], performing a pick task as shown in Fig. 4a. We

consider this a realistic representation since point clouds can

easily be obtained from a simple depth camera. The five

datasets generated were “Small-Shelf” (Fig. 4a), “Tall-Shelf”

(Fig. 5a), “Thin-Shelf” (Fig. 5b), “Table” (Fig. 5c), and “Cage”

(Fig. 7a). As shown in the figures, the starting configuration

xSTART for all datasets was a home (tuck) position, except
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for “Table” where xSTART is a random configuration under the

table. The goal configuration xGOAL is an inverse kinematics

(IK) solution placing the end-effector in a grasping pose

relative to an object. For the “Shelf” datasets, one object

per shelf is grasped and it is always the one furthest back.

For “Table” and “Cage” the grasped object is shown in the

figures. We generate different motion planning problems

similarly to [12] by uniformly sampling poses for the robot

base and scene objects. Note that such variation generates

highly diverse planning problems since even small changes in

the positions of the obstacles relative to the robot drastically

affect Xobs and the resulting xGOAL.

All evaluated methods produce biased samples in C which

can guide any sampling-based motion planner. We evalu-

ated these methods within RRT-connect (RRTC) [53] and

bidirectional EST (BIEST) [6], implemented in the Open

Motion Planning Library (OMPL) [54]. Additionally, we

considered two versions of each planner: one with default

OMPL parameters (RRTC-DEFAULT and BIEST-DEFAULT) and

one with a tuned range parameter (RRTC-TUNED and BIEST-

TUNED) found by a parameter sweep over a diverse set of

problems. In our experiments we compare FIRE with the

following methods:

• UNIFORM: Default uniform sampling of the C-space.

• MPNET-SMP [29]: This is the sampling-biasing version

of Motion Planning Networks. Given a training dataset

of 3D point cloud workspaces, xSTART, xGOAL, and solution

paths, MPNET-SMP learns to iteratively produce samples

that mimic the solution paths. We adapted the provided

implementation and tuned its hyperparameters to achieve

the best performance for the given problems.

• FLAME [12]: This framework is similar to FIRE and also

retrieves “critical samples” from a DB. However, the

local primitives are simpler, including only workspace

information (lw) and not considering xGOAL or xSTART.

The similarity function considers lwi similar to lwj if

they have the same position and binary representation.

• STATIC [39], [40]: These methods generate a static

sampling distribution by extracting key configurations

from past trajectories. They do not rely on a similarity

function but instead attempt to capture the problem’s

invariants. We emulate the static sampling idea of these

methods by retrieving all the C-space samples we have

stored in DB.

We consider these methods representative of the works

discussed in Sec. III, with MPNET-SMP being a non-retrieval

method that directly maps M to C-space samples using a

neural network, FLAME a retrieval-based method with a hand-

crafted similarity function, and STATIC a method that learns

problem invariants.

We evaluate the performance of FIRE and the generalization

of the learned similarity function when both the training and

testing examples come from the same dataset (Sec. V-A), and

also when the testing dataset is increasingly different from

the training dataset (Sec. V-B). Finally, we evaluate FIRE

when retrieving experiences it was not trained on, and while

the DB includes unrelated experiences (Sec. V-C). For our

experiments we used Robowflex with MoveIt [55], [56] and

the OMPL benchmarking tools [57]. The sampling parameters

for FIRE were the same as [12] (σ2 = 0.2, λ = 0.5).

A. Generalizing in similar problems

1) Learning (Training): In this experiment, MPNET-SMP,

FLAME, and FIRE were trained in problems that come from

the “Small-Shelf” dataset. FIRE and FLAME were given

enough training examples for their performance to converge

in the “Small-Shelf” dataset. By convergence, we mean that

the average planning time did not improve after doubling

the number of experiences in DB. Specifically, FIRE was

trained with a total of 500 training examples. From these

500 examples, 200 were used to learn the similarity function

and all of the 500 examples were added to DB. Training the

Siamese network of FIRE took around 1 hour for 200 epochs.

FLAME was trained with 1000 examples which were added

to DB as described in [12]. Since it was difficult to profile

the convergence of MPNET-SMP (≈1 day of training time)

we provided it 5000 training examples to ensure that it has

enough data. This is of a similar order to [29] (10000).

2) Evaluation (Testing): The methods were tested in a dif-

ferent set of 100 problems that also come from “Small-Shelf”.

As seen in Fig. 4b, FIRE outperformed all other methods

in all four different settings in terms of planning time. We

do include the retrieval time in the total planning time

for FLAME and FIRE but it was negligible in all cases

(0.01− 0.1 seconds). We also notice that the tuning of

the underlying planner and the use of experiences interact

synergistically, with the best performance being achieved by

FIRE with RRTC-TUNED.

B. Generalizing in increasingly different problems

1) Learning (Training): We do not perform any additional

training in these experiments and simply use the methods

trained on “Small-Shelf” from Sec. V-A.

2) Evaluation (Testing): In these experiments, the meth-

ods were tested on three datasets that are increasingly

different from “Small-Shelf” as shown in Fig. 5. The

“Tall-Shelf” is created by stacking the “Small-Shelf” three

times. The “Thin-Shelf” is also a bookcase but is different

from “Tall-Shelf” and “Small-Shelf” because there is a

divider and the distance between the shelves has changed.

Finally, “Table” is significantly different from “Small-Shelf”

regarding W . We used 100 testing examples for each of

these three datasets. As shown in Fig. 6, MPNET-SMP could

not outperform UNIFORM in “Tall-Shelf” and “Table” except

for RRTC-DEFAULT, while in “Thin-Shelf” it was not able

to improve upon UNIFORM given the time limits. In some

cases MPNET-SMP performed worse than UNIFORM; we

attribute this behavior to the testing examples being outside

the training dataset of MPNET-SMP. FLAME did offer some

improvement for the “Tall-Shelf” environment but could not

transfer to “Thin-Shelf” or “Table”. Also, in some cases

FLAME performed worse than UNIFORM; this is attributed

to the retrieval of very few critical samples leading to
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"Tall-Shelf" Dataset (Test) "Table" Dataset (Test)"Thin-Shelf" Dataset (Test)

a) b) c)GoalStart Goal GoalStart Start

Fig. 5. The three datasets used to test the evaluated methods. Different problems are generated similarly to Fig. 4. a) An example environment from the
“Tall-Shelf” dataset. The “Tall-Shelf” is created by stacking the “Small-Shelf” three times. b) An example environment from the “Thin-Shelf” dataset. This
is also a bookcase like “Small-Shelf” and “Tall-Shelf”, but the shelves are shorter and there is a divider, making it a much more challenging problem. c)

An example environment from the “Table” dataset, which includes a table with several objects and is very different from the other datasets.

Timeout

Fig. 6. Planning time (including retrieval) when testing in the three datasets shown in Fig. 5. All of the methods are only trained with the “Small-Shelf”
dataset. The timeout was set to 180 seconds.

b)a)

"Cage" Dataset

Start Goal

Timeout

Fig. 7. a) An example problem from the “Cage” dataset. b) Planning
time for 100 test examples from the “Cage” dataset using the RRTC-TUNED

planner. The timeout was set to 60 seconds. The x-axis shows the number
of experiences that exist in DB from “Small-Shelf” and from “Cage”. Note
that “Small-Shelf” and “Cage” have very different solution paths. In other
words, the experiences from “Small-Shelf” do not transfer to “Cage”.

poor biased sampling (if nothing is retrieved it defaults to

UNIFORM). On the other hand, FIRE outperformed all other

methods even in “Thin-Shelf” and “Table”, demonstrating

that the learned similarity function generalizes to problems

that are significantly different than those in the training

dataset. We also note that “Table” has a different xSTART

configuration than the training dataset “Small-Shelf”. This

demonstrates the usefulness of independently considering

xSTART and xGOAL in the local primitives defined by FIRE.

C. Robustness to irrelevant experiences

1) Learning (Training): In this experiment, we do not

retrain FIRE’s similarity function and use the one obtained

from training on “Small-Shelf” from Sec. V-A. However,

now we add to DB example problems from both “Cage”

and “Small-Shelf”. Note that the problems from “Cage”

and “Small-Shelf” are highly dissimilar in terms of solution

paths. Thus, when solving a problem from “Cage” a good

similarity function should not retrieve experiences generated

from “Small-Shelf”. The x-axis in Fig. 7b shows the ratio of

example problems from “Cage” and “Small-Shelf”. For exam-

ple, 500/0 denotes an experience database DB that has 500

examples from “Cage” and 0 examples from “Small-Shelf”.

2) Evaluation (Testing): In this experiment, we tested on

100 example problems from the “Cage” dataset using RRTC-

TUNED as the underlying planner. We compared with STATIC

to illustrate how irrelevant experiences from “Small-Shelf”

affect performance. The results in Fig. 7b show that although

STATIC significantly outperforms UNIFORM, its performance

degrades as we add irrelevant experiences in the training

dataset. On the other hand, FIRE is robust to the irrelevant ex-

periences from “Small-Shelf” added to DB since it maintains

its good performance even with the 500/4500 ratio. FIRE’s

similarity function was only trained on “Small-Shelf” while

DB includes experiences from “Cage”. This demonstrates

that the learned latent space can successfully structure local

primitives it was not trained on.

VI. CONCLUSION

In this work, we have proposed FIRE, a framework that

learns a similarity function for motion planning problems with

sensed environments. Using the learned similarity function,

FIRE retrieves relevant experiences from a database in the

form of “critical samples” that can informatively guide any

sampling-based motion planner. Through our experiments, we

demonstrated the generalization of FIRE outside its training

dataset. Furthermore, FIRE can also learn incrementally

without retraining by simply adding experiences in DB, and

can discriminate between relevant and irrelevant experiences.

In the future, we would like to improve FIRE by bound-

ing its memory requirements and treating biased samples

differently from uniform samples [22], [24]. Additionally,

we would like to investigate how the same ideas apply to

other problems that include motion planning such as task and

motion planning or kinodynamic planning.
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[57] M. Moll, I. A. Şucan, and L. E. Kavraki, “Benchmarking motion

planning algorithms: An extensible infrastructure for analysis and
visualization,” IEEE Robot. Autom. Magazine, vol. 22, no. 3, pp. 96–
102, 2015.


	I Introduction
	II Problem Description and Notation
	III Related work
	IV Methodology
	IV-A Local primitives
	IV-B Creating the experience database
	IV-C Creating a dataset of similar pairs
	IV-D Learning the similarity function
	IV-E Retrieving relevant experiences

	V Experiments
	V-A Generalizing in similar problems
	V-A.1 Learning (Training)
	V-A.2 Evaluation (Testing)

	V-B Generalizing in increasingly different problems
	V-B.1 Learning (Training)
	V-B.2 Evaluation (Testing)

	V-C Robustness to irrelevant experiences
	V-C.1 Learning (Training)
	V-C.2 Evaluation (Testing)


	VI Conclusion
	References

